Quadratic Functions (Graphing) – Guided Practice

Based on the zeros, which best represents the graphed function?

- \bigcirc **A** y = (x-3)(2x+2)
- \bigcirc **B** y = (2x+6)(x+1)
- \bigcirc **C** y = 2(x+3)(x-1)
- \bigcirc **D** y = 2(x-3)(x-1)

What are the real roots of $x^2 - 7x + 10 = 0$?

- A 2 and 5
- B 1 and 10
- C -1 and -10
- D -2 and -5

What are the solutions to $x^2 - 2x - 8 = 0$?

- **A** x = 1 and x = -9
- **B** x = 0 and x = -8
- \bigcirc **C** x = -2 and x = 4
- \bigcirc **D** x = -4 and x = 2

Identify each of the x- and y-intercepts of the relation shown.

Which number is a zero of the function h?

$$h(x) = x^2 + 3x - 18$$

- B −3
- O C 0
- O D 6

Which equation could represent a graph with x-intercepts of (4,0) and (-7,0)?

- \bigcirc **A** $y = x^2 + 3x 28$
- \bigcirc **B** $y = x^2 3x 28$
- \bigcirc **C** $y = x^2 + 3x + 28$
- \bigcirc **D** $y = x^2 3x + 28$

Quadratic Functions (Graphing) – Guided Practice

Identifying Key Parts on Desmos

EXAMPLE: Use Desmos to find the following characteristics of the given quadratic.

$$f(x) = x^2 + 2x - 3$$

Axis of Symmetry		
Vertex	Type the function into Box 1 as written	
Open up or down? Minimum or maximum?	2. Click on the gray dots to locate:a. Vertex (write as a point)b. x- and y-intercepts (write as a point)	
y-intercept	3. The axis of symmetry is the x -value of the vertex	
x-intercept	4. Look at the <i>y</i>-value of the vertex for range5. <u>Remember:</u> domain of a quadratic is all reals!	
Domain		
Range		

Using Desmos to Find Quadratics in Standard Form

EXAMPLE: Which function is a quadratic in standard form with x-intercepts at x = -3 and x = -1?

A.
$$y = x^2 - 3x - 1$$

B.
$$y = -x^2 - 3x - 1$$

C.
$$y = x^2 + 4x + 3$$

D.
$$y = x^2 - 4x + 3$$

- 1. Recognize that *x*-intercepts can be written as factors
 - Write as two binomials with opposite signs for the x-values!

2. Type:
$$y = (x + 3)(x + 1)$$
 into Box 1

- What does the graph look like?
- 3. Write the answers A D in Boxes 2 5
 - Which graph/quadratic matches what is Box 1?